
1

Release notes v4.0
Important! Create a backup copy of your projects and connector repositories before updating to the

new version. Projects saved in version 4.0 can’t be opened in earlier versions.

A few words from the creators of EasyMorph

The 4th version of EasyMorph is the most significant modification of EasyMorph over the last 3 years. It

implements a lot of user experience, many feature requests, and effectively brings the application to the

next level. Roughly twice better performance, modules, web requests, column lineage, automated data

profiling and suggestions – all this makes version 4 a new generation of EasyMorph which is now more

powerful, convenient, and secure. Web requests open for EasyMorph a new era of interoperability and

data exchange with external services and systems, while preserving the same easy, visual, and

interactive authoring that is EasyMorph known for. The new version sets a solid foundation for future

development of both EasyMorph Desktop and EasyMorph Server for many years ahead. Many new

features of the upcoming releases will be based on the novelties introduced in this version or will extend

them in some way.

Another big change is the new approach to the free edition (more on that below). From now on, we

pledge that actions created using SDKs and libraries provided by various vendors for free will be

available in the free edition as long as implementing them in EasyMorph didn’t require significant

development effort on our end. For instance, actions “Amazon command” and “Google Drive command”

are now available in the free edition. The upcoming integration with Power BI will also be included in the

free edition. At the same time, we are reducing the number of actions/iterations available in the free

edition to 20/20, which we believe is still not that bad especially taking into account that the free edition

offers more than 100 actions, no restrictions on data volume, and the same level of integration with

EasyMorph Server as the Professional edition, including the ability to publish and execute projects on

Server. Note that previous versions of EasyMorph with higher limits for actions/iterations remain on our

website so you can keep using their free editions as long as you want.

Finally, we stepped up the degree of integration between Desktop and Server, tightened connector

security, and addressed a few important usability issues with Server voiced earlier by our users.

EasyMorph Server has got a new multi-session runtime. While the task management UI looks very much

unchanged version in 4.0, the upcoming versions will bring a deep makeover to Server as well as many

new features that are now enabled by the new runtime.

We highly recommend reading through all the Release Notes as the changes are numerous.

A special “thank you” goes to our paying customers – without you the new release won’t be possible.

Team EasyMorph

https://easymorph.com/download-server.html
https://easymorph.com/download.html

2

Breaking changes

What changed What can it break

The free edition now allows only 20 actions and 20
iterations. See chapter “What’s new” below for more
details.

Projects with more than 20 actions/iterations
executed in the free edition will stop working.

Connector names are now case-sensitive. When
EasyMorph looks up a connector by name in a
connector repository it doesn’t ignore case anymore.
For instance, connector called “MyDatabase” now
can’t be specified using a parameter which value is
“Mydatabase”.

Actions where connector names are specified
using parameters may stop working if
parameter values ignored case.

Values in column "Error source" generated in
Call/Iterate in the Capture errors mode now include
the module name.

If you project’s logic depends on contents of
error messages generated by Call or Iterate
actions, they project may stop working
properly.

The “Import from Excel” action now requires explicit
indication that data should be loaded from an Excel
range.

Projects which have the "Import from Excel"
action with source specified as an Excel range
will try to load a sheet instead of a range.
Such projects should be edited manually to
specify a range.

The underlying mechanism for column formatting has
changed. Column formats are no longer linked to
tables, but instead to column lineage metadata.

Table column width and formatting can be
different for renamed columns. This can
affect or break formatting in PDF reports.

Import actions (e.g. “Import from delimited text”) now
generate an error value instead of a text value for data
parsing errors. The message text in the error value is
the same as it was in the text values previously.

If your project’s logic depends on contents of
error messages, it may stop working properly
because cells with error messages now have
type Error instead of Text.

Known issues

 Launcher doesn’t write log files. It will be fixed in v4.1.

 Help-articles not available for some new features on the day of release. It will become available

later.

3

What’s new

Re-balanced free edition

The free edition has been re-balanced in version 4.0. It now includes many import/external actions that

previously were only available in the Professional edition. All the following actions are now available in

the free edition:

 Call

 File transfer (over SFTP/SCP)

 Amazon Command

 Google Drive Command

 Import from Google Sheets

 Export to Google Sheets

 Tableau Server command

 Qlik Sense command

 Split delimited file

Besides that a few restrictions have been removed:

 The “Export to database” action now has no restrictions in the free edition and allows explicit

column-to-field mapping.

 The “Database command” action also has its restriction removed and allows using advanced

data types in the “Create table” command.

The number of actions/iterations available in the free edition has been reduced to 20/20.

Modules

Projects in EasyMorph now consist of one or more modules. Modules eliminate the need to have a

separate project for iterations (loops) or sub-routines. The ability to iterate another project will remain,

but it won’t be strictly necessary anymore. In the vast majority of cases iterations are now arranged

using modules.

A module is very much what you probably used to think of a project in the previous versions – it consists

of tabs (sheets) with tables with actions and can have parameters. The main difference between a

module and the old understanding of a project is that modules don’t have embedded connectors. See

the illustration below to better understand the difference between version 4 and previous versions:

4

Modules can be used in calls/iterations instead of external projects. By default, the Call/Iterate actions

now offer to run a module, not a project.

Parameters are defined for each module individually, not for the entire project. Repository connectors

are the same for all modules. Embedded connectors are still specified in project, as it was previously.

Modules are isolated from each other. It’s not possible to reference a table in a module from another

module. Any module can call/iterate any module in the same project as long as it doesn’t create a

cyclical dependency. A module can have a default result table, as projects could previously.

In a project there always is a default module. It’s marked with a red flag (similarly to default result

tables). When a project is executed by another project, or Server/Launcher, the default module is the

starting point. The result table of a project is the result table of its default

module.

You can switch between modules using the new sidebar on the right (see the

screenshot to the right), or by pressing Ctrl+PgUp / Ctrl+PgDn.

Modules can be cloned, copied/pasted into other projects, or imported from

other projects (see menu Design, button “Import module”).

A project can have inactive (passive) modules – i.e. modules that are not a

starting point and are not called by other modules. It allows for instance keeping

older versions of modules around, and reverting back to them in a few clicks, if it

becomes necessary.

Column lineage

Column lineage metadata is a new internal mechanism that is used for column formatting, lineage

tracking, and storing column metadata (such as annotations to database fields or header cells in Excel).

5

The lineage path for a column starts at the action where the column was created, and then it tracks the

column through all the actions that pass the column further unchanged, or modified in some way. It

stops when the column is deleted, or simply ignored (discarded) by the next action. The lineage can

track columns from table to table, through derived tables (but not through modules).

Screenshot 1: Column lineage path.

In the screenshot above, column [state_long] was created by an “Import from delimited text” action,

then it was merged by a “Merge” action (in another table), and finally it was modified using a “Modify

column” action. While the column’s content changed along the path, it’s basically the same column from

a semantical perspective.

When user changes column format or width, the new formatting is now applied automatically for all

columns along the column lineage path, even if it goes into other tables or the column is renamed on

the path.

To see a column’s lineage path, select the column (click its header) and press the

“Lineage” button the context bar.

Performance improvements

Due to improvements in algorithms and internal data structures the new version has much better

performance in a number of ways:

 Faster, more memory-efficient data compression

 Improved algorithms for actions such as Aggregate, Merge, Sort, Deduplicate, Match, Running

total, Pivot, Keep/remove matching and some others.

 Up to 4 times faster import from text files

 Up to 3 times faster import from Excel spreadsheets

 Faster import from databases

6

On average, projects in the new version run 30-50% faster and consume 10-15% less memory than in

older versions of EasyMorph.

The “Web location” connector

The “Web location” connector is intended for accessing web APIs using the “Web request” and “Iterate

web request” actions (described further). The connector can be configured to automatically insert

specified URL parameters or/and HTTP headers into every web request thus simplifying working with

APIs that require authorization tokens or/and secret keys to be provided in every request.

Under the hood, for each project run the connector creates and holds a temporary cookie container.

Session cookies that come in HTTP responses are automatically placed in the cookie container that is

shared with all following web requests during project execution. If a module/subproject is called, the

cookie container is silently passed to it, so that the session cookies are available there too. When project

execution is finished the cookie container is discarded. This mechanism makes it possible to use the

“Web location” connector and the web request actions for cookie-based authorization through

emulating web-forms on websites.

Screenshot 2: The "Web location" connector.

Actions for interaction with web APIs

Two new actions, “Web request” and “Iterate web request” allow sending and receiving HTTP requests

from EasyMorph projects without scripting/coding. The “Web request” action sends a single HTTP

request. “Iterate web request” sends multiple uniform requests and appends responses into one

dataset, if necessary. These are very powerful, albeit somewhat low-level tools for interaction with web

7

APIs. To use the actions at least a basic understanding of the HTTP protocol is required. The actions

provide the following capabilities:

 Constructing a request URL by combining the base URL specified in the “Web location”

connector, and an endpoint path specified in the action. Parameter insertion is supported.

 Adding URL parameters specified explicitly, by module parameters, or by column values (Iterate

Web Request only).

 All types of HTTP request methods – GET, HEAD, PUT, POST, DELETE, CONNECT, etc.

 Specifying HTTP request headers and their values explicitly, using module parameters, or

column values (Iterate Web Request only).

 Construct the request body as a flat JSON, name-value collection of a web-form, contents of a

file, free-form text (Web request only), or column value (Iterate Web Request only).

 Obtain response status, headers, and body as column values in the action’s result

 Save the response body into a file

Both actions have the Preview pane that displays the constructed HTTP request, sends it, and displays

the response without executing the action.

Screenshot 3: The "Web request" action.

To parse JSON/XML use regular actions (see example) and/or the new web functions (described further).

Next version (v4.1) will introduce purpose-built actions for constructing and parsing JSON/XML.

Other new actions

The Repeat rows action creates duplicates of rows as many times as specified in a given column

https://community.easymorph.com/t/parsing-json-xml-from-web-responses/1268

8

for each row. A typical use case would be generating a table with a sequence of dates defined by

ranges of dates (see example).

The Enumerate groups action assigns numbers from 1 to N to each unique combination of values

(group) in specified columns. While it was possible to do using a combination of actions

previously, the new action makes it simpler.

The Distribute total action is somewhat reverse to aggregation. It distributes (breaks down) a

total/subtotal using another column’s values as weights. A typical use case would be a calculation

of projected sales revenue for every product given a total full year projection, and up to date revenue

for each product. In this case the projected total is broken down by product. While it was possible to do

using a combination of actions previously, the new action makes it simpler.

Changes in existing actions

The Import from Excel action now allows importing and automatically appending multiple sheets at

once without iterations. New option for adding a column with sheet name.

The Enumerate rows action now can enumerate rows inside groups.

The Keep matching and Keep mismatching actions have been merged into one new action called

Keep/remove matching that supports multiple key field matching.

The start/end dates in the Calendar now can be specified using a parameter.

Queries in the Import from database now can use a parameter to specify top-N rows.

Web functions

In addition to the new connector and the new actions for web requests, a number of new functions have

been introduced to facilitate web operations:

jsonvalue(JSON_text, JSONPath) – extracts a single value or a JSON object from a node specified by

JSONPath. Example:

jsonvalue("{customer:{ID:345}}", "customer.ID") returns 345.

xmlvalue(XML_text, XPath) – extracts a single value or an XML node from a node specified by XPath.

Namespaces are not supported. Example:

xmlvalue("<CUSTOMER><ID>345</ID></CUSTOMER>", "CUSTOMER/ID")

returns 345.

isjson(text) – returns true if the given text is a JSON object or JSON array. Example:

isjson("{customer:{ID:345}}") returns TRUE.

isxml(text) – returns true if the given text is an XML object. Example:

https://community.easymorph.com/t/use-case-for-repeat-rows/1297
https://goessner.net/articles/JsonPath/

9

isxml("<XML>") returns FALSE.

combineurl (url, path) – Combines an URL and a URL path into one URL. Example:

combineurl("https://mysite.com/path1", "path2") returns

https://mysite.com/path1/path2.

hashhex (method, text) – Returns a hexadecimal hash of a text string calculated using one of the

available methods (md5, sha1, sha256, sha384, sha512). Example:

hashhex("md5", "EasyMorph") returns 530ea21e53be78b34a678373bbda8306.

hmachex (method, text, key) – Returns a hexadecimal HMAC of a text string calculated using one of

available methods (md5, sha1, sha256, sha384, sha512). Example:

hmachex("md5", "Easy", "Morph") returns a4f47c0d5a1080056a2a560f6832389a.

encode(method, text) – Encodes a text string using one of the available methods

(“uriComponentEscape”, “Base64”, “Base64url”). Example:

encode("uriComponentEscape", "one+one") returns one%2Bone.

decode(method, text) – Decodes a text string using one of the available methods

(“uriComponentEscape”, “Base64”, “Base64url”). Example:

decode("uriComponentEscape", "one%2Bone") returns one+one.

uriencode(encoding, value) – Encodes a text string using specified charset. Example:

uriencode("iso-8859-15", "Les Misérables") returns Les+Mis%e9rables.

uridecode (encoding, value) – Decodes a text string using specified charset. Example:

uridecode("iso-8859-15", "Les+Mis%e9rables") returns Les Misérables.

Other new functions

addhours(number_date, number) – Adds the specified number of hours to date.

addyears(number_date, number) – Adds the specified number of years to date.

system('callermodulename') – returns the name of the module that called the current module.

Grouping/aggregation in queries

Queries can now group/aggregate data. The necessary GROUP BY clause will be generated in underlying

SQL automatically. To create a grouping/aggregation use the column context menu in the datagrid.

https://en.wikipedia.org/wiki/HMAC

10

Screenshot 4: Aggregations in queries.

Aggregated fields are marked with a blue line in the field header. All aggregations and groupings can be

removed by clicking the “Remove aggregations” link.

Miscellaneous

 The “1010data” connector has been deprecated.

What’s new in Desktop

Server-hosted connector repositories

With the new version it is now possible to use and edit connectors of a Server space right from Desktop.

To use a Server-hosted repository, switch to it in the Connector Manager (see screenshot below). Note

that using connectors on Desktops is disabled by default and should be enabled in the space security

settings.

Working with Server-hosted repositories is no different from working with file repositories. You can

create new connectors, edit existing connectors, copy/paste connectors, and set/remove a write

password for the repository.

11

Screenshot 5: Server-hosted repository in Desktop.

As with file-based repositories, Launcher always uses the same repository as Desktop.

Context bar

The new context bar is intended for column search, formatting and instant profiling.

Screenshot 6: Context bar.

When a column is selected, the context bar displays:

 Column search box

 Button that opens the “Column profiler” dialog with the list of unique values and other

metadata

 Indicator of column annotations

 Column format selector (works as well with multiple columns selected)

 Button “Lineage” to open the “Lineage path” dialog

 Data types of column values with counts for each type (hover to see)

 Quick aggregation such as sum, min, max, or average

 Data quality suggestions (if any)

Indication of new and referenced columns

The datagrid in tables now indicates columns that have been created by the action as well as not new

(i.e. created in a previous action) columns that are used (referenced) in column properties. New

columns are displayed with a solid green line in the column header. Referenced columns are indicated

with a dark grey dotted line.

12

Screenshot 7: Indication of new and referenced columns.

Note that actions that support grouping by one or more columns do not mark such columns as

referenced.

Scheduling projects in Launcher right from Desktop

It is now possible to schedule a project in Launcher right from Desktop. Go to menu “About” and press

the “Schedule project” button. A new Launcher task will be created and scheduled for execution. Note

that Launcher should be running in order for this feature to work.

Screenshot 8: Scheduling a project from Desktop.

Task tags in Launcher

Launcher tasks now can be tagged with one or many tags. The list of tags can be used to

quickly filter tasks. It is possible to filter by multiple tags at once – use Ctrl+click to select

multiple tags for filtering.

Tags are created and edited in the “Tag manager” dialog.

13

Miscellaneous in Desktop/Launcher

 New datagrid cell/column selection style

 New tab “Metadata” in the Column Profiler

 New data quality suggestions

 With an invalid/expired license Desktop works in the free edition mode without resetting key

 New shortcut: Ctrl+double click table title bar to minimize the table

 Collapsible left/right sidebars

 Launcher now automatically reloads connectors when they are changed in Desktop

 Launcher now has the "Reload connectors" button for manual repository reloads

 Watermark helpers in connectors

What’s new in Server

Email notifications about failed tasks

EasyMorph now can send email notifications about scheduled tasks that failed. Email settings are

configured in the new Mail tab available in the Server settings. Email notifications can be sent via

Microsoft Exchange or any IMAP email server.

Screenshot 9: Email notification settings in EasyMorph Server

14

Additional space security settings

The space security page now shows a few new options:

 “Repository access for Desktop users” – disable, read-only, or full access to the connector

repository from Desktops users.

 Allow/forbid copying connectors to clipboard by Desktop users.

 Allow/forbid arbitrary code execution on Server. Disables/enables actions “Run program”,

“Iterate program”, “PowerShell”, and “SSH command”.

Miscellaneous

 New “Upload” button in Sever Settings for uploading a license key

 New “Upload” button in Space Settings for uploading a repository file

 Option for creating a new repository when a space is created

Previous release notes

Link: Release notes for v3.9.x.

https://easymorph.com/download/release-notes/Release_notes_v3.9.5.pdf

